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ABSTRACT

Field-flow fractionation {FFF) peak capacity values have been
computed with only two major assumptions: first, the plate height
is supposed the sum of only two contributions, axial molecular
diffusion and transversal nonequilibrium, and second, the steric
effect has been neglected in the equations of retention and peak
broadening.

Several reduced parameters have been defined to generalize the
equations and limit the number of variable parameters. It appears
that among the already implemented FFF subtechniques for which the
elution spectrum is an explicit function of the principal dimen-
sion, or mass, of the retained sample (which excludes electrical
FFF), sedimentation FFF has some peculiar characteristics due to
the fact that the field-induced velocity depends on a particular
sample, while in thermal and flow FFF it is the same for all
samples of a given type under fixed experimental conditions. For
example, in sedimentation FFF, the axial diffusion contribution to
the plate height persists at a much larger reduced eluant velocity
than for the other techniques.

The effect on the peak capacity of the retention volume, the
channel length, the eluant velocity as well as the influence of
detection limit and analysis time have been studied. Simple rela-
tionships between peak capacity and these parameters are estab-
lished in the high retention and negligible axial diffusion limits
which previal in most experimental situations, and deviations from
these limits are discussed. It is shown that for all three
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techniques mentioned above there is a maximum retention volume
beyond which no sample can elute because of the onset of the steric
effect. Under typical conditions, this limiting volume is 25~100
times the channel void volume.

INTRODUCTION

The maximum number of components which can be resolved is an
important parameter for characterizing the separation power of a
fractionation technique. It can serve as a basis for comparing
the relative merits of several separation methods, even if they are
quite different in their principles. The concept of peak capacity,
which is the maximum number of components which can be separated at
unit resolution, has been introduced for application to chro-
matography (1), and then has been extended to other fractionation
methods like electrophoresis, centrifugation (2), isocelectric
focusing and density-gradient sedimentation (3).

Peak capacity calculations are almost impossible in some of
these techniques, due to the complexity of the separation process,
so that assumptions have to be made to get an approximate peak
capacity value. If all peaks in liquid chromatography are eluted
with the same plate number, N (a relatively reasonable approxima-
tion) the peak capacity becomes roughly equal to v¥N/2 when the
retention volume of the last eluted component is no larger than 10
times the column void volume.

In field-flow fractionation (FFF), a similar approximation
gives rise to the same peak capacity values (4) as in chro-
matography. However while leading to a very simple result, such
an assumption (constant plate number for all the peaks), ignores
one of the most interesting features of FFF: the significant in-
crease of the plate number with increasing retention. Of course,
during a multi-component separation, such an increase is usually
moderated by the concomitant decrease of the sample diffusion co-
efficient. However, it is likely that the peak capacity in FFF
will be larger than predicted by the approximation of a constant

plate number.
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In the following, use is made of another interesting charac-
teristic of FFF, namely its theoretical tractability. Because of
simple and well defined channel geometry, peak capacities can be
calculated for several system configurations. The peak capacity
depends on a large number of parameters, such as channel length
and thickness, solvent flow-rate, field type and strength, as well
as physicochemical characteristics of the analytes (molecular
weight, size, diffusion coefficient). Therefore, in order to give
some generality to the calculations, and reduce the number of
parameters influencing peak capacity, we define a set of reduced

parameters and make use of dimensionless groups of parameters.

BASIC EQUATIONS

To evaluate the peak capacity in FFF, we have used an itera-
tive computer program which, from a given peak, calculates the
characteristics (retention volume and standard deviation) of the
following peak by a trial-and-error convergent method so that
the resolution RS between the two peaks is equal to 1. Thus, one
just has to enter into the program the characteristics of the first

peak and the information necessary to compute retention volumes

and standard deviations.

Resolution equation

The resolution of a pair of adjacent peaks 1 and 2 is given
by :

Yz, " VR,

(1)
v, +UV2)

Rs = 2(s
or the difference in retention volume (VR) between the two peaks

divided by four times their average standard deviation o ex—

V’
pressed in volume units. The retention volume and standard devia-
tion of a given sample can be expressed as functions of the channel
void volume Vo’ its retention factor R, which is its migration

velocity relative to the solvent average velocity, and its plate
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number N:
V0
Sy (2)
v v
o, = = - —2 (3
VN R/N
or:
v
R 1
v T R (4)
[e]
[}
\ 1
v - T = (5)
o RVN

With the help of Eqs. 4 and 5, the resolution RS can be expressed

as a function of the retention factors and plate numbers of peaks

1l and 2:

R = (6)

S 2( 1 ¥ 1 >
R, VYN, R, VN3

Eqs. 2 to 6 are valid for Gaussian peaks. 1In reality, the peaks
on the fractogram, which represent the variations of concentratiocn
of the analyte as a function of time are not rigorously Gaussian,
although the peak shape becomes closer to the Gaussian curve as N
increases. For this reason, and because in some instances N can
be small, we have slightly modified Eqs. 4 to 6 in the computer
calculations. These modifications are given in an appendix, which

is available from the authors upon request.

Plate number and plate height

The problem of finding VR and 9y of the second peak is thus
2 2

replaced by the problem of finding dimensionless parameters R, and

N, such that' R, in Eq. 6 is equal to 1. Both parameters are re-

S
lated to the basic FFF parameter A which represents the space
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constant of the analyte's exponential concentration profile rela-
tive to the channel thickness, w. When R becomes smaller than 0.7,
A 1s very close to the distance of the analyte center of gravity
from the accumulation wall relative to w (5). When the solvent
velocity profile is parabolic (in the following, the small distor-
tion of the flow profile from the parabolic one due to the tempera-
ture dependence of viscosity in thermal FFF is neglected), R is

only a function of A:

R = 61 {(l+e_1/x>/<l-e~l/x) - 2x} (8)

This relationship between R and A has been experimentally verified
for a number of systems in the different FFF subtechniques. In
the following, we assume it is valid in the range of retentions
considered, except when the steric effect occurs (see below). The

plate number is related to the plate height H:
N = L/H (9

where L is the channel length. H is the fundamental parameter
describing the peak broadening. Under non-gradient conditions,

the plate height of a monodisperse sample is given as the sum of
two terms reflecting the contributions of the longitudinal molecular
diffusion, and non-equilibrium due to the velocity profile in a

channel cross-section (6):

(10)

where D is the diffusion coefficient of the sample, u the solvent
average velocity and X a non-equilibrium dimensionless parameter.
In this equation, the relaxation contribution to H (6) has not

been taken into account since, in any FFF system, it is possible to
stop the solvent flow, inject the sample and restore the solvent
flow after enough time is spent for the establishment of the com-
pound's exponential concentration profile. The polydispersity
contribution to H is not taken into account here, since in peak

capacity calculations, one assumes each peak represents a
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monodisperse species. Even if this condition is seldom satisfied
for real samples, the peak capacity concept will keep all its sig-
nificance as an index for separation power evaluation and for com-
parison of different fractionation techniques. In experimental
work, there might be other contributions to the plate height aris-
ing from multipaths of different velocities inside the channel,
dispersion due to the external parts of the system (injector,
detector, conmection tubings) or concentration effects. In the
following, one assumes that all these contributions are negligible
and that the band broadening of a monodisperse sample is satis-
factorily represented by Eq. 10. The x coefficient is a function

of A given by the following equation (7):

2} %F
X = T i (11)
R(1-e My

in which F is equal to:
F = 2a06-(1/0)-(A/0) -6a+18xe A 147222 (281 %-100+1)

-1/

-72)%e (28X 24+10)+7) (12)

and A to:

b3
]

l2Ae_l/X//(e_1/A—l) (13)

Reduced parameters

At this point, it is convenient to introduce the following

reduced parameters:

h = H/w (14)
v = %g (15)

h is the reduced plate height and v the reduced velocity. They are
defined quite similarly to the corresponding parameters used in
chromatography (8): the average distance for cross-sectional

diffusion, which is the particle diameter in the case of
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chromatography in packed columns, is replaced here by the FFF
channel thickness w. By eliminating u, w and D using Eqs. 10, 14

and 15, the plate height takes the following simple form:

2
h = 7ot XV (16)

Thus, the reduced plate height of samples with the same retention
and reduced velocity should be identical, whatever the actual
solvent velocity, sample diffusion coefficient, channel thickness,
field type and strength.

However, in a given FFF run, the retention factor generally
decreases (the retention volume increases) with increasing sample
molecular weight and, hence, decreasing diffusion coefficient.
Therefore, as seen in Eq. 15, the reduced velocity increases with
increasing retention. It would be convenient to express this
effect on v either in terms of the retention factor R, or in terms
of the basic parameter A. These two ways are equivalent since R
and A are explicitly related through Eq. 8. According to the

theory of retention in FFF, D is related to A by (9)
D=UwA (17)

where U is the field-induced velocity, which might be different
for each analyte and as a result depends on retention. In order
to get the relationship between D and A, one needs to express the
dependence of U on A.

In thermal FFF, the diffusion coefficient is simply linked to

A through:
D= DT (dT/dx) w A (18)

where dT/dx is the temperature gradient across the thickness of

the channel and DT the thermal diffusion coefficient. For a given

polymer type and for a given solvent D,, does not depend on the

T
molecular weight, and is thus independent of retention (10).

Therefore, for thermal FFF, one can write:

D=c,A (19)
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Cp is a constant in a given run. Comparison of Eqs. 17 and 18
shows that in thermal F¥FF, U is equal to DT(dT/dx) and is the same
for all samples. In flow FFF, the selectivity is based only on
differences in diffusion coefficients and D is simply given by

(11):

D=Uw ) = p X (20)

where U is the cross-flow velocity which is constant in a given
run. By implication the proportionality coefficient Cp is also
constant. In sedimentation FFF, the field induced velocity is not
constant but depends on the retention through the analyte diameter.
It is given by Stokes sedimentation law:

2r?ApG

U= 9

(21)

where r is the particle radius, Ap the density difference between
the sample and the eluant, G the centrifugal acceleration and n
the eluant viscosity. The diffusion coefficient is related to the

radius of the equivalent sphere by the Stokes-Einstein law:

kT
r = D (22)

where k is the Boltzmann constant and T the absolute temperature.
Therefore, after combining Eqs. 17, 21 and 22 and rearranging, one

obtains:

1/ 1/3 1/,

2
BoGu (kD) _ A =g A (23)

162 7% n?

For electrical FFF, there is no simple relationship between
D and * since the retention is determined by the net electrical
charge of the analyte which in turn depends on the eluant pH and
is not easily related to the diffusion coefficient. Therefore,
the following calculations of peak capacity will not apply to the
case of electrical FFF.

It thus appears that in the three FFF subtechniques (thermal,

flow, sedimentation) for which there is a simple connection between
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D and j, this relationship can be summarized as:
- Y
D Do A (24)

with vy = 1 for thermal and flow FFF and vy = 1/3 for sedimentation
FFF. D0 is the diffusion coefficient of a sample for which » =1,
which is a quasi-unretained compound (R = 0.984). Therefore, the

reduced velocity v can be expressed with the help of Eq. 15 as:

uw
v = —X (25)
DAY
o
or
Y
= A
v vo/ (26)

where Yy is the reduced velocity corresponding to A = 1, which can

thus be called the reduced eluant velocity:

v, = uw/D0 (27)

According to Eq. 17, Do = Uw for A = 1. Using this result in Eq.
27 gives v  as the ratio u/U of the axial eluant velocity to the
transversal field-induced velocity of an analyte for which x = 1.
According to Eqs. 16 and 27, the reduced plate height is then
written as:

Y XV
2X s 20 (28)

Rv Ay
(o]

h =

h then depends only on v, and A, where Vs in that case, is a
constant in a given FFF run, and does not depend on a particular
sample.

To complete the dimensionless analysis of the peak capacity
calculation scheme, it is necessary to relate the plate number in
Eq. 9 to the reduced plate height. This leads to the definition
of the reduced channel, length, Z:

(29)

€ |t
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so that N is given by:

(30)

=z
n
5 ey

Summary of reduced equations

The equations with reduced (or dimensionless) parameters
necessary to calculate the peak capacity are summarized below, in

the form corresponding to Gaussian zones:

A1
rRS -1 = le R, T (6)
2( + )
R, VN, Rz VN,
J N =% (30)
Y xXv
2\ o)
h =2+ —> (28)
L Rvo AY

R and ¥ are functions of A given by Eqs. 8 and 11-13, respectively.
The problem of characterization of the second peak is thus re-
duced to determining the A value of this peak so that the resolu-
tion becomes equal to one. For this determination, one has to
specify three parameters: the reduced channel length g, the re-
duced eluant velocity Vo and the field type through the coefficient
Y. One can note that the field strength (temperature gradient in
thermal FFF, cross-flow rate in flow FFF, rpm in sedimentation FFF)
is not a parameter to be indicated since it is included in the
value of Vo through the diffusion coefficient of the compound
eluting at 1.017 Vo (R =0.984, » = 1). Thus the peak capacity
will not be changed with increased flow rate and field strength

if the diffusion coefficients of compounds eluted at 1.017 VO are
proportional to the flow. Consequently, from a peak capacity point
of view, doubling the solvent flow rate is equivalent to increasing
the temperature drop in thermal FFF and the cross—flow rate in
flow FFF by a factor 2 or by a factor 2.8 times rpm in

sedimentation FFF.
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Furthermore, Eq. 24 predicts an infinite diffusion coefficient
for an unretained compound () infinite), which is not meaningless,
but simply means that every low molecular weight solute is slight-
ly, even if not perceptibly, retained. Therefore, for computer
calculations, one has to specify the R (or i) value of the first
eluted peak. In the following, it has been taken as R = 0.996
(=2, VR/VO = 1.004).

Numerical values of the variable parameters for typical FFF
previous experiments

At this point, it is useful to give some typical values of the
z and v, parameters for some typical actual FFF experiments.

A recent literature survey has shown that thermal FFF can be
successfully applied to most polymers with molecular weight larger
than 1000 which are soluble in organic solvents. For such polymers
the thermal diffusion coefficient DT, is nearly independent of the
molecular weight and equal to about 10’ cmzs_1°K_1. If one takes
as typical a channel which is 50 cm long and 0.1 mm thick, and
which is operated with a temperature drop of 60°C between the two
plates and in which the solvent flows at such a rate that the no-
field elution time is 5 minutes, one obtains g = 5000. v, in this
case is close to 300. However, these are only indicative values,
since in high speed thermal FFF, values up to 2500 for Vo and 8500
for 7 have been reached (12).

Typical flow FFF channels are about 50 cm long and 0.25mm
thick, so that the z value is 2000. As previously noted, v, is
here the ratio of the eluant axial velocity, u, to its transversal
(cross-flow) velocity, U. Noting that u is the axial flow rate, i
divided by the cross-section bw, where b is the channel breadth,
and that U is the ratio of the cross-flow rate, Gc,to the corre-

sponding cross-section bL, one can express Vo in flow FFF as:

v, = S+ LY. (31)
Voo Ve
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The ratio G/GC can vary within a large domain, due to the wide
range of applications of flow FFF. Experiments have been con-
ducted with Vo values ranging from about 100 for relatively low
molecular weight solutes like proteins (13) to over 2000 for sub-
micron-sized silica or polystyrene latex particles (14).

In sedimentation FFF, v depends on a relatively large number
of parameters: flow velocity and channel thickness as well as
rotation speed of the centrifuge, viscosity of the suspension,
density difference between the solute and the solvent, and tempera-
ture. Depending on the application type, the actual conditions
may vary widely and so will Vo Previous experiments have been
carried out at Vo values ranging from 5000 to over 70000 and ¢

values in the range 700-3500 (15,16).

RESULTS AND DISCUSSION

As previously noted, the three parameters y, characterizing
the field type, Voo the reduced eluant velocity and r, the reduced
channel length, must be given for peak capacity calculations.
However, the peak capacity depends also on the maximum value of
the retention volume and increases with this value, as more space
is available for peaks. 1In the following, we will study the in-

fluence of each of these parameters.

Peak capacity and maximum retention volume

In FFF solutes of very small size compared to the channel
thickness show a minimum retention volume below which no peak
appears. This corresponds to the channel void volume. As the
size of the solute increases, the retention volume usually in-
creases., As long as this size remains small enough, there is no
limit to the maximum possible retention volume resulting from the
separation process. A limit may in practice be set by detectabil-
ity or analysis time considerations. However,as the solute size

increases further, a point is reached where the retention behavior,
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(described by Eq. 8), is disturbed. This comes from the fact that,
due to its finite size, the center of mass of the solute particle
cannot approach closely to the wall. In that case, the normal FFF
effect and the steric effect combine together and R is given by
(17):

]
1]

6) + 6o (32)
with:
a =rlw (33)

This equation is a limiting expression for small values of both
A and a. When r increases, A decreases and « increases, so that
there is a minimum value of R, which corresponds to a maximum
retention volume. One can therefore consider that the maximum
peak capacity corresponds to this volume, for which Eq. 32 usually
holds. To be correct, one should modify the equations for R and
x to take into account the steric effect. The corrections, how-
ever, are small for small A and a (17), so they are not included
in the following calculations.

It is interesting to get an estimate of the limiting R value.

By differentiating Eq. 32, one obtains the condition for minimum

R:

dx _  de

dr ~ T dr (34)
From Eqs. 22, 24 and 33, A is related to a through:

kT i 1 /
= = By MY
A= (6ﬁnwD ) 1/y B (35
o a

where the proportionality coefficient B is a constant in a given
run. By differentiating and combining with Eq. 34, one obtains

the relationship between the limiting values of A and oa:

Mim = "®1in (36)

where Y, as above, is 1 for thermal and flow FFF and 1/3 for
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sedimentation FFF. Therefore, from Eq. 32, one has:

- = 1
Rigm = 6 (IFap 0= 61+ 2) Ay (37)

These limiting variables can be related to & the o value for a

sample for which A = 1. If one uses Eq. 35 for both im and o
and combines the results with Eq. 36, one obtains:
L
I+y
A =
1im = (V%) (38)
and:
1
<a 1+y
.« - _o>
lim
YY
Then R,. becomes:
1im
1
_ 1 ( >1+Y
Riim 6<;+Y> Yo (39}
which gives for thermal and flow FFF:
Rlim =12 Vao (40)
and for sedimentation FFF:
_ 3/
Rlim = 10.53 ag (41)

At this point, it is useful to give some typical values of a

and l/Rlim. Combination of Eqs. 17, 22, 38 and 40 gives:

o =KL __ (42)

6N Uw?>
and

= VeV = 0.36 U (43)

1/R o’ max kT

1

Numerical values for thermal and flow FFF are easily obtained by

replacing U by DTAT/W and GC/bL, regpectively. In thermal FFF,
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with a temperature drop of 60°C and a cold plate temperature of

20°C, an eluant viscosity of 10°° Poise, w = 0.1lmm, and DT = ].0—7

-1 _ -6
em?s” °C ' one obtains a typical value of a, = 3.6x10 , which

gives R = 0.023 or l/Rlim = 44. In flow FFF, at room tempera-

ture wiiiman aqueous eluant (n = lO-ZP) and channel dimensions of
500%20%0.25mm, cross-flows ranging from 10 to 100 ml/hr will give
a, values of l.2x10_5—l.2x10—6, which correspond to Rlim =

0.042 - 0.013 or l/Rlim = 24-75. TFor sedimentation FFF, one has
on combining Eqs. 22, 23, 33 and 41:

3KT s
a =(—"— (44)
4mAPGw®

1/
- - 206G “
1/Rlim = (VR/VO)max =0.14 w < T > (45)

For Ap = 0.1g/ml, w = 0.25mm and G = 300g (or, which is nearly

and

-5
equivalent, w = 0.lmm and G = 12000g), one has a, = 9.4x10 ,

which gives R m - 0.010 or l/Rlim = 100. The interesting point in

the above equitions is that the maximum retention volume and,
therefore, the maximum peak capacity increases with increasing
field strength. The maximum size of the solute which can be
analyzed before the occurrence of retention reversal due to the
steric effect does, however, decrease with increasing field
strength.

The variations of the peak capacity, n (see Eq. 50) with
retention volume are shown in Figure 1 for four typical cases, for
which ¢ = 2000. For curves 1 and 2, y = 1/3 and the reduced
eluant velocities are 50000 and 5000, respectively. Curves 3 and
4 correspond to y = 1 and v, = 1000 and 100, respectively. In
this figure, like in the following, the peak capacity value
corresponding to a given value of (VR/VO) is the number of peaks
which have been completely eluted before a volume VR of eluant

has flowed through the column plus the fraction of the last eluted
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FIGURE 1. Peak capacity versus maximum retention volume at
constant channel length and eluant velocity. For all curves:

¢ = 2000. Curve l: vy = 1/3, v_ = 50000. Curve 2: Y = 1/3,

Vo = 5000. Curve 3: ¥ =1, v °=1000. Curve 4: Y =1, V_ = 100.

peak which has emerged at VR' Therefore, all the curves have a
common point corresponding to n = 0.5 for VR/Vo = 1. From Figure

1 it 1s obvious that the peak capacity increases with VR/VO; it

is relatively small when VR/VO is smaller than 10 (about 3-6 peaks
for curves 1, 2 and 3, and 15 peaks for curve 4), but for VR/Vo
larger than 50 it reaches values over 20 in cases 1 and 3,and 50 in
cases 2 and 4. Especially noteworthy in Figure 1 is the rate of

increase of peak capacity with retention volume. In chromatography
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n increases linearly with the logarithm of the retention volume for
a constant plate number (1), while in FFF the variation of n with
VR is almost linear for cases where y = 1 and still faster for
y = 1/3. One might explain the difference in behavior between
thermal or flow FFF and sedimentation FFF by expressing the rate
of generation of peak capacity with retention volume in the limit
of high retention. Under these conditions h is mostly determined
by the non-equilibrium contribution (this is only an approximation
for curves 2 and 4 where, at VR/V0 = 100, axial diffusion accounts
for one half and one third of the plate height, respectively).
This rate of generation of peak capacity is given by (2)

d (VR/VO)

dn = ——2-9_
40V/V°

(46)
In the high retention limit, X is approximated by l/[9(VR/Vo)3]
and A by 1/[6(VR/VO)] within 4% for (VR/VO) > 10. Then combina-
tion of Egs. 2,3, 28, 30 and 46 gives:

1=y
1 2-y 2
dn = = 6 T
8 Vo (VR/VO) d(VR/VO) (47)

After integration, it becomes:

for y=1 (thermal and flow FFF)

= £
n = 0.31 5 (VR/VO) + const. (48)

and for Y=1/3 (sedimentation FFF)

rs
n = 0.42 /J;' (VR/V ) /5 + const. (49)
Vo o

Therefore, in the high retention range when the axial molecular
diffusion contribution to peak broadening is negligible, the peak
capacity increases linearly with retention volume in thermal and
flow FFF and increases as VR“/B in sedimentation FFF. Since this

condition is fulfilled only in the lower part of the high reten-
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FIGURE 2. Peak capacity versus reduced channel length at constant
eluant velocity. (VR/VO)max = 20. Same y and v, as for Figure 1.

tion range (VR/Vo = 10-40) for curve 2, one observes, in that case,

a maximum for dn/d(VR/Vo) around VR/Vo = 65-70.

Peak capacity and channel length

The variations in peak capacity at VR/VO = 20 with reduced
channel length are plotted on a logarithmic scale in Figure 2,
for the four different cases discussed above. When n is larger
than 10-15, these curves are straight lines, all having the same
slope equal to 0.5, which means that n increases as the square
root of 7. The slight deviation from this slope at low n values
comes from the fact that, according to the above definition of peak
capacity, the limiting value is 0.5 when ¢ goes to 0. More rig-
orously, the curve 1n(n-0.5) vs ln z has a slope of 0.5. The
square root dependence of n versus g may be understood from Eq.
46 which can be integrated, neglecting the original 0.5 value of

n, as:
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A(VR/VO)

n (50)

4 OV/VO
where A(VR/VO) is the difference in relative retention volume be-
tween the last and first peak and oV/V0 the appropriate average
relative standard deviation. Comparison with Eq. 1 shows that n
represents the resolution between the two extreme peaks of the
fractogram multiplied by the ratio of their arithmetical average
relative standard deviation to the appropriate average coming from
the integration of Eq. 46. According to Eq. 3, ;;7V; can be ex-
pressed as (VR/VO)//rf , where (VR/VO) relates to either the first
or last peak and N is the correspondingly appropriate average plate
number. As N is equal to g/ng, where h is the appropriate average
plate height, it follows that the peak capacity n, like the resolu-
tion between two peaks (18) is proportional to the square root of

the reduced channel length.

Peak capacity and eluant velocity

The variations of the peak capacity with the eluant reduced
velocity, v, are represented on a logarithmic scale in Figure 3
for thermal and flow FFF (y=1) and in Figure 4 for sedimentation
FFF (Y=l/3)' In both figures, ¢ has been taken equal to 2000, and
four curves have been plotted corresponding to (VR/VO)max equal to
10, 20, 50 and 100. The range of velocities is about the same on
the logarithmic scale for both figures. However, in Figure 4 the
Vg values are 10 times larger than the values in Figure 3 because
of the significant difference in experimental conditions mentioned
above. All the curves in these figures show, as a major character-
istic, a decrease of n with increasing Vo They all are linear
with a slope equal to -0.5 for some range of v which means that
for this range, n varies as the reciprocal of the square root of
v, This is what is expected from Egqs. 47-49 in the high retention
range, in which all the curves are located, when the plate height
is only determined by the nonequilibrium contribution (term yv in

equation 16). Deviations from the linearity occur at high velocity



13: 48 25 January 2011

Downl oaded At:

w2 B 8
OO OO

%

I 1 1 1 1 A 1 L I i

0 20 S0 10 200 500 1000 2000 5000 10000 20000

FIGURE 3. Peak capacity versus reduced eluant velocity at constant
channel length in thermal and flow FFF (y = 1). ¢ = 2000.

(VR/VO)max = 10 (curve 1), 20 (curve 2), 50 (curve 3) and 100

curve 4.

FIGURE 4. Peak capacity versus reduced eluant velocity at constant
channel length in sedimentation FFF (v = 1/3). & = 2000.

(VR/VO)max = 10 (curve 1), 20 (curve 2), 50 (curve 3) and 100

(curve 4).
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when n is lower than about 5 because, as noted previously, n has a
limiting value of 0.5 when no separation occurs at very high
velocity.

Deviations from linearity also appear in the low velocity
region, especially for high values of (VR/Vo)max’ for which a
maximum can be observed. This comes from the fact that nonequilib-
rium is no longer the only contribution to plate height, and that
molecular axial diffusion must be considered. Plate height curves,
h vs Vg in FFF are characterized by a minimum, the coordinates of

which are obtained from Eq. 28

hooo =2 VIR (51)
= ‘Y T (RY)
Vo, ope = VT V2D (52)
Both hmin and Vo,opt depend on A (or R), but hmin does not depend

on the field type, while Vo opt does through y. At the optimal
’
velocity, the molecular axial diffusion and the nonequilibrium
contribute equally to the plate height. Figure 5 represents the
variations of h_, with R. The curve has a maximum at h ., = 0.428,
min min
a rather small value, for R = 0.69. As previously noted (19), the
minimal plate height decreases with increasing retention and the
limiting value of h ., for small R is:
min

h. =2/7R=0.9R (53)
min 3

Figure 6 represents the variations of VO,Opt with R for the two
values of y. In contrast to the previous figure, Figure 6 shows
that vo,opt has a minimal value, which is equal to 2.2 around

R = 0.6 for y=1 and to 7.4 around R = 0.7-0.75 for y=1/3. 1In the
low retention range, when R goes to 1, vo,opt varies as 14.5 Ay
and thus increases to infinity faster for thermal and flow FFF
than for sedimentation FFF. This increase to infinity is due to
the fact that according to Eq. 24, D increases to infinity when R
goes to 1. This is not important since, in practical situations,
one is not able to measure retention factors corresponding to A

values larger than 2 (R = 0.996) or even 1 (R = 0.984). TFar more
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FIGURE 5. Minimum value of the reduced plate height versus reten-—
tion factor.

significant are the variations of v in the high retention

o,opt
domain. In that range, v can be expressed as:
o,opt
V18 1
= = 54
VO,opt 6Y R(Z—Y) (54)
which gives:
for Yy = 1:
v = 0.71/R (55)

o,opt
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FIGURE 6. Reduced eluant velocity corresponding to the minimum
plate height versus retention factor. Curve 1 and left y-axis:

v = 1 (thermal and flow FFF). Curve 2 and right y-axis: vy = 1/3
(sedimentation FFF).
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and for y = 1/3:

v - 2.83/%°/°

o0,0pt (56)

According to these equations, Vv
g q » Vo, opt

decreases to 0. Therefore, during an FFF run at a constant reduced

increases to infinity when R

eluant velocity v, as analytes become more and more retained,
axial molecular diffusion accounts for a successively more impor-
tant relative contribution to plate height. Consequently, the
plate height is larger than its nonequilibrium contribution alone.
This explains the deviation in the curves in Figures 3 and 4 from
the linearity expected on the basis of Egqs. 48 and 49 for the
lowest values of v, and the highest values of (VR/Vo)max' Since
vo,opt increases faster with decreasing R in sedimentation FFF
than in thermal or flow FFF, this deviation occurs in the first
case at higher velocities than in the second. Ultimately, at the
lowest values of Vo and R, axial diffusion becomes the predomi-
nant mechanism for band broadening. In that case Eq. 47 must be

replaced by:

d 1 6YLv, l%i
n o= -1 / .
4 2 (VR/VO) d(VR/VO) (57)

This shows that n in this range increases as the square root of

VO. Therefore, one will observe for each curve a maximum of n for
some value of vo, this value being higher in sedimentation FFF than

in thermal or flow FFF.

Peak capacity and detectability

The peak capacity may, sometimes, be limited by detectability
considerations. Most of the detectors used in FFF, as in liquid
chromatography, are concentration sensitive. To be detectable, an
analyte must have a concentration CmaX larger than a minimal
detectable concentration at the outlet of the channel. Cmax can
be expressed for a Gaussian zone in terms of the elution parameters
previously defined, and the mass m of analyte injected in the

channel:
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Cpax = o = /x (58)
oy /20 Ve o

In liquid chromatography, when the plate number is the same for
all the solutes, Cmax/m decreases with increasing VR’ which may
impose a limit of (VR/VO)max and consequently on the peak capacity.
Figure 7 represents the variations of the relative standard
deviation, cv/Vo, of peaks eluting at different retention volumes
during the fractionation run for four typical cases corresponding
to the same values of Vo and vy as for the curves in Figure 1, g
being the same for all curves and equal to 2000. The shapes of
the sedimentation FFF curves 1 and 2, on one hand, and of the
thermal or flow FFF curves 3 and 4, on the other hand, are markedly
different. This difference may be understood if one looks at the
high retention limit expression of GV/VO when the first term of

the left-hand side of Eq. 28 is negligible:

S y-1
. _ [¢) 2
oV/VO =2 —?E:;7~ (VR/VO) (59)
6 g
which gives for y=1:
Yo
cV/VO = 0.82 -7; (60)
and for y= 1/3:
= 4 \)0 / =1/,
°v/vo = 0. 5\/ . Vp/v ) (61)

In thermal and flow FFF, the standard deviation appears to be
independent of retention volume. This is manifested by the
quasi-constancy of the curves 1 and 2 for VR/Vo > 10. By contrast,
in sedimentation FFF, Eq. 61 indicates that Oy decreases with in-

creasing V_ as seen in Figure 7 for curves i and 2 at VR/Vo > 5.

R
Egs. 59-61 are valid only in the high retention range; they cannot

explain the differences in the shapes of the curves for VR/Vo < 10.
All curves show a fast increase of gV/Vo with VR/V0 for Vg close to

vV, as a result of the dependence of [)(/(Rz)\y)]l"'2 with (Vé/Vo),
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tention volume. ¢ = 2000. Same y and v, as for Figure 1.
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since in that retention range axial diffusion is negligible.
Therefore, sedimentation FFF curves, which are increasing with VR
at low VR and decreasing at large VR’ have a maximum around VR/Vo =
2-3 while thermal and flow FFF curves increase steadily to their
constant limit at large VR. When nonequilibrium is the main band
broadening mechanism, oV/VO is proportional to the square root of
the eluant reduced velocity, as indicated for the limit of high
retention by Eqs. 59-61. Accordingly, the OV/V0 values of curves

1 and 3 are about three times higher than the corresponding values
of curves 2 and 4. As previously noted, during a given run,

where the ratio vo/vo,opt decreases with increasing retention
volume, the axial diffusion contribution to h may not remain
negligible at high VR. Therefore, deviations from the limits set
by Eqs. 60 and 61 are observed for the low v, curves 2 and 4 at
values of VR/VO larger than about 30. They are manifested by an
inflection point in curve 4 and a minimum in curve 2.

Since for given values of m and Vo’cmax is inversely propor-
tional to (UV/VO), one can easily deduce the variations of CmaX
with VR/V0 from Figure 7. Therefore, after a sharp decrease from
VR = V0 to VR ~ 2 VO, which is not of interest since resolution is
poor in this range, the concentration at the peak maximum for a
monodisperse solute either increases, or remains approximately
constant with increasing retention volume. This is an interesting
characteristic peculiar to FFF. Consequently, under the typical

experimental conditions evoked here, the peak capacity will not be

limited by detectability considerations.

Peak capacity and analysis time

As seen above, peak capacity is increased by extending the
retention volume range for separation. But this increase is
achieved at the expense of time. Therefore the peak capacity may
be limited by the amount of time allowed for the fractionation.
One can try to optimize the peak capacity for a given analysis

time. The analysis time is expressed as:
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_ L
tA TR, u (62)
lim

or, by combination with Eqs. 27 and 29:

£, = e (63)
Do Rlimvo

In this equation, the term wz/DO is twice the average time required

by the solute eluted at R = 0.984 (A=1) to move a distance w by

diffusion. Since, as noted previously, Do is equal to Uw where U

is the field-induced velocity, identical for all solutes in

thermal and flow FFF, and corresponding to the solute for which

A=l in sedimentation FFF. This time wz/DO represents also w/U,

the time required to move distance w at the field-induced velocity

U. Optimization of n at constant t, can be made in different ways,

A
because there are many variables involved in the expression of tA.

First of all, one may leave R constant and equal to the

im
minimum value of R at which compouigs can elute because of the
onset of the steric effect. If one assumes w and Do constant, one
is looking at n for a constant ratio ;/vo, which means constant
void volume elution time. The optimization problem is then the
following: 1is it better to work with a long channel at a high
flow-rate or with a short channel at a low eluant velocity?

Figure 8 represents on a logarithmic scale the variations of n with
vo at constant value of c/vo for Rlim = 1/50 and for four cases.
Curves 1 and 2 correspond to sedimentation FFF with the g/\)0 ratio
equal to 1 and 0.1, respectively, curves 3 and 4 to thermal and
flow FFF with T,/\)o equal to 1 and 10, respectively. From this
figure it appears that the peak capacity is constant in sedimen-
tation FFF for vy > 5000 and in thermal and flow FFF practically
over all the velocity range. Again the high retention limit with
the hypothesis of negligible axial diffusion contribution to plate
height, as reflected in Eqs. 48 and 49, allows one to explain this
constancy of n. Indeed, according to these equations, n is pro-

portional to the square root of the g/vo ratio. Therefore, as this

ratio is maintained constant, n is constant whatever the actual
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FIGURE 8. Peak capacity versus reduced eluant velocity at constant

analysis time. (VR/VO)max = 50. Curve 1l: y = 1/3, c/vo = 1.
Curve 2: y = 1/3, I;/\)0 = 0.1. Curve 3: vy =1, ;/vo = 1. Curve

4: vy =1, l;/vo = 10.

values of r and Ve The deviation from this limit for the sedi-
mentation FFF curves at low Yo is accounted for by the increasing
relative contribution of axial diffusion to the plate height with
decreasing velocities. When this contribution is predominant,

Eq. 57 predicts that n is proportional to /E;;_or Vo /27;;.
Therefore, at low velocity, n varies linearly with Vos and the log
n versus log v, curve should have a slope equal to 1. The shape
of curve 1 for vy ranging from 100 to 5000 represents the transi-
tion between the two limiting forms of n. In summary, from Figure
8, it appears that in order to get the highest peak capacity at
constant analysis time,constant field and retention volume range,
it does not matter what are the actual values of g and g, pro-
vided that Vo is large enough for the axial diffusion contribution
to plate height to be mnegligible. This is in sharp contrast with
the optimization result in liquid chromatography where the highest
peak capacity is obtained for infinitely large velocity, so that

n is, in practice, limited by pressure considerations.
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When working with a given FFF channel at a fixed force~field,
one may impose a low eluant velocity and stop the analysis after
a small volume of liquid has flowed through the column, or one may
have the eluant flowing at a high rate and stop the field after a
larger retention volume so that the analysis time is the same in
the two cases. This is equivalent to maintaining the product
R,. Vv _or the ratio (V /v ) /v o, constant in Eq. 63. 1In the

1lim o o’ max

high vo/v range and high retention limit, in which most

o,opt

experimental work is done, Eq. 48 indicates that n is proportional

to (Ve/V) . //_ or /‘[(v 2/ Vo) pax/Vol+ Similarly, Eq. 49

shows that, in sedlmentatlon FFF, n is proportional to

4/ 3
v /Vo)max 3/ Yvg or v, [(V /Vo)max ] . In both cases,
at constant (v_/V ) /v , n is seen to increase with increasing
R" "o’max’ "o

Vo© This trend is confirmed by the n values reported for differ-
ent reduced eluant velocities in Table 1 for vy=1/3 and Table 2

for y=1. Therefore the maximum peak capacity at constant analysis
time, channel geometry and field, will be obtained at the maximum
retention volume compatible with the onset of the steric effect

and the associated highest velocity.

TABLE 1

Peak Capacity Values at Constant Analysis Time and Constant
(VR/VO)maX/\)O Ratio in Sedimentation FFF

Yo (VR/Vo)max n
10 000 10 4.9
20 000 20 8.1
50 000 50 16.2
100 000 100 28.2
Y=1/3
z=2000

(VR/VO)maX/vO=O.OOl
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TABLE 2

Peak Capacity Values at Constant Analysis Time and Constant
(VR/VO)max/vO Ratio in Thermal and Flow FFF

Vo (VR/Vo)max n
100 10 15.7
200 20 21.2
500 50 32.1
1000 100 44.6
y=1
z=2000

(VR/Vo)max/\)o=0'l

CONCLUSTON

Under present experimental conditions, the peak capacity in
FFF reaches about 5 to 100, depending on the actual system used.
The present study can serve to easily evaluate the change in peak
capacity brought about by a modification of any operational param-
eter, since all these parameters are grouped in only three reduced
variables: the reduced channel length, the reduced eluant
velocity and the maximum relative retention volume. The validity
of the results depends on the validity of the basic expressions
for retention and peak broadening described by Eqs. 8 and 10.
Deviations from these equations have sometimes been observed,
especially for high retention. While the origin of these devia-
tions is not completely elucidated, one believes that, in most of
the cases, they rely directly or indirectly on technological
problems and that they will be reduced and, hopefully, eliminated
by future progress. For instance, improved detectability will
allow a decrease in peak broadening and retention shift associated
with injection and concentration nonidealities in the channel.
In that light, peak capacity calculations performed in this study

give ultimate values based on present experimental conditioms.
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LIST OF SYMBOLS

channel breadth

cross-section average concentration
proportionality constant in Eq. 20 for flow FFF
proportionality constant in Eq. 23 for sedimentation FFF
proportionality constant in Eq. 19 for thermal FFF
reduced plate height

Boltzmann constant

mass of analyte injected in the channel

peak capacity

spherically equivalent analyte radius

time

analysis time

retention time

eluant average velocity

channel thickness

coordinate along the channel length

factor in the expression of F (Eq. 11)

concentration at the maximum of the peak at the outlet of
the channel

effective dispersion coefficient
diffusion coefficient

diffusion coefficient corresponding to A=l
thermal diffusion coefficient

factor in the expression of y (Eq. 11)
centrifugal acceleration

plate height

molar flux density

channel length

plate number

apparent plate number

retention factor

resolution

temperature

velocity induced by the field on the analyte

723
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V0 channel void volume

VR retention volume

v axial flow-rate

Gc cross-flow rate in flow FFF

a ratio of the spherical equivalent analyte radius to the
channel thickness

a a value corresponding to A=l

8 proportionality constant in Eq. 35

Y exponent in Eq. 23

z reduced channel length

v eluant viscosity

A basic FFF parameter = space constant of the analyte exponen-
tial concentration profile relative to the channel thickness

v reduced velocity

Vo reduced eluant velocity

Ap density difference between analyte and eluant

o peak standard deviation in time unit

oy peak standard deviation in volume unit

o, peak standard deviation in distance unit

T reduced time

X nonequilibrium dimensionless parameter



